skip to main content


Search for: All records

Creators/Authors contains: "Richardson, H. Camille"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Herein, the synthesis of 1,2,3,4‐tetrasubstituted benzenoid rings, motifs found in pharmaceutical, agrochemical, and natural products, is described.[1]In the past, the regioselective syntheses of such compounds have been a significant challenge. This work reports a method using substituted arynes derived from aryl(Mes)iodonium salts to access a range of densely functionalized 1,2,3,4‐tetrasubstituted benzenoid rings. Significantly, it was found that halide substituents are compatible under these conditions, enabling post‐synthetic elaboration via palladium‐catalyzed coupling. This concise strategy is predicated on two regioselective events: 1) ortho‐ deprotonation of aryl(Mes)iodonium salts to generate a substituted aryne intermediate, and 2) regioselective trapping of said arynes, thereby improving previously reported reaction conditions to generate arynes at room temperature and in shorter reaction times. Density functional theory (DFT) computations and linear free energy relationship (LFER) analysis suggest the regioselectivity of deprotonation is influenced by both proximal and distal ring substituents on the aryne precursor. A competition experiment further reveals the role of arene substituents on relative reactivity of aryl(Mes)iodoniums as aryne precursors.

     
    more » « less
  2. Abstract

    A combination of experimental and computational studies have identified a C=O⋅⋅⋅isothiouronium interaction as key to efficient enantiodiscrimination in the kinetic resolution of tertiary heterocyclic alcohols bearing up to three potential recognition motifs at the stereogenic tertiary carbinol center. This discrimination was exploited in the isothiourea‐catalyzed acylative kinetic resolution of tertiary heterocyclic alcohols (38 examples,s factors up to >200). The reaction proceeds at low catalyst loadings (generally 1 mol %) with either isobutyric or acetic anhydride as the acylating agent under mild conditions.

     
    more » « less
  3. Abstract

    A combination of experimental and computational studies have identified a C=O⋅⋅⋅isothiouronium interaction as key to efficient enantiodiscrimination in the kinetic resolution of tertiary heterocyclic alcohols bearing up to three potential recognition motifs at the stereogenic tertiary carbinol center. This discrimination was exploited in the isothiourea‐catalyzed acylative kinetic resolution of tertiary heterocyclic alcohols (38 examples,s factors up to >200). The reaction proceeds at low catalyst loadings (generally 1 mol %) with either isobutyric or acetic anhydride as the acylating agent under mild conditions.

     
    more » « less